Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells
ثبت نشده
چکیده
In this research, n-dodecylthiol was added to P3HT/ PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT:PC70BM doped with 0-5% by volume of ndodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. Keywords—n-dodecylthiol, Congugated PSC, P3HT/PCBM, Polymer Solar Cells.
منابع مشابه
Fabrication of Annealing-Free High Efficiency and Large Area Polymer Solar Cells by Roller Painting Process
The polymer solar cells were fabricated by a novel solution coating process, the roller painting. The roller painted film composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has smoother surface than the spin coated film. Since the roller painting is accompanied with shear and normal stresses and is also a s low drying process, the process induces eff...
متن کاملHighly efficient exciton harvesting and charge transport in ternary blend solar cells based on wide- and low-bandgap polymers.
We have designed highly efficient ternary blend solar cells based on a wide-bandgap crystalline polymer, poly(3-hexylthiophene) (P3HT), and a low-bandgap polymer, poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2'3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT), and a fullerene derivative (PCBM). By using highly crystalline P3HT, high fill factors were obtained even for ternary ...
متن کاملThe Role of Oxide Thin Layer in Inverted Structure Polymer Solar Cells
The role of wide band gap oxide thin layer in inverted structure polymer solar cells was investigated by employing oxide films of TiO2 and Nb2O5 approximately 10 nm in thickness deposited onto FTO substrates. The experimental results demonstrated that the thin oxide layer serving to separate the electron collecting electrode and the photoactive film of a blend of poly(3-hexylthiophene) (P3HT) a...
متن کاملReappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells
The most efficient organic solar cells produced to date are bulk heterojunction (BHJ) photovoltaic devices based on blends of semiconducting polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT) with fullerene derivatives such as [6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM). The need for blending the two components is based on the idea that the exciton diffusion length in polymers like P3...
متن کاملLarge Molecular Weight Polymer Solar Cells with Strong Chain Alignment Created by Nanoimprint Lithography.
In this work, strong chain alignment in large molecular weight polymer solar cells is for the first time demonstrated by nanoimprint lithography (NIL). The polymer crystallizations in nonimprinted thin films and imprinted nanogratings with different molecular weight poly(3-hexylthiophene-2,5-diyl) (P3HT) are compared. We first observe that the chain alignment is favored by medium molecular weig...
متن کامل